Self-similar measures and their Fourier transforms. II
نویسندگان
چکیده
منابع مشابه
Large Scale Renormalisation of Fourier Transforms of Self-similar Measures and Self-similarity of Riesz Measures
We shall show that the oscillations observed by Strichartz JRS92, Str90] in the Fourier transforms of self-similar measures have a large-scale renormali-sation given by a Riesz-measure. Vice versa the Riesz measure itself will be shown to be self-similar around every triadic point.
متن کاملCauchy Transforms of Self-Similar Measures
is a useful tool for numerical studies of the measure, since the measure of any reasonable set may be obtained as the line integral of F around the boundary. We give an effective algorithm for computing F when is a self-similar measure, based on a Laurent expansion of F for large z and a transformation law (Theorem 2.2) for F that encodes the self-similarity of . Using this algorithm we compute...
متن کاملCauchy transforms of self-similar measures: the Laurent coefficients
The Cauchy transform of a measure has been used to study the analytic capacity and uniform rectifiability of subsets in C: Recently, Lund et al. (Experiment. Math. 7 (1998) 177) have initiated the study of such transform F of self-similar measure. In this and the forecoming papers (Starlikeness and the Cauchy transform of some self-similar measures, in preparation; The Cauchy transform on the S...
متن کاملSelf Fourier functions and fractional Fourier transforms
It was shown [ 21 that any SFF can be decomposed in this manner. Thus, F(x) is an SFF if, and only if, it can be expressed as the sum of four functions in the form of the above equation. Additional SFF studies are reported in refs. [ 3-51. Another issue that has been recently investigated is the fractional Fourier transform [ 6-91. Two distinct definitions of the fractional Fourier transform ha...
متن کاملFractional Fourier transforms and their optical implementation . II
The linear transform kernel for fractional Fourier transforms is derived. The spatial resolution and the space-bandwidth product for propagation in graded-index media are discussed in direct relation to fractional Fourier transforms, and numerical examples are presented. It is shown how fractional Fourier transforms can be made the basis of generalized spatial filtering systems: Several filters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1993
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1993-1081941-2